Step of Proof: eq_int_cases_test
9,38
postcript
pdf
Inference at
*
1
0
3
I
of proof for Lemma
eq
int
cases
test
:
.....assertion..... NILNIL
1.
A
: Type
2.
x
:
A
3.
y
:
A
4.
P
:
A
5.
i
:
6.
j
:
7.
P
(if (
i
=
j
) then
x
else
y
fi )
8.
Type
9. (
i
=
j
)
bb
:
. ((
i
=
j
) =
bb
)
Type
latex
by (\p.At (get_term_arg `UA` p) (D 0) p)
latex
1
:
1:
10.
bb
:
1:
((
i
=
j
) =
bb
)
Type
2
: .....wf..... NILNIL
2:
Type
.
Definitions
s
=
t
,
,
(
i
=
j
)
,
if
b
then
t
else
f
fi
,
f
(
a
)
,
,
,
Type
,
x
:
A
B
(
x
)
,
x
:
A
.
B
(
x
)
,
t
T
origin